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Abstract
This paper presents a number of numerical investigations of orbits in the
de Broglie–Bohm version of quantum mechanics. We first clarify how the
notion of chaos should be implemented in the case of Bohmian orbits. Then,
we investigate the Bohmian orbits in three different characteristic quantum
systems: (a) superposition of three stationary states in the Hamiltonian
of two uncoupled harmonic oscillators with incommensurable frequencies,
(b) wave packets in a Hénon–Heiles-type Hamiltonian and (c) a modified two-
slit experiment. In these examples, we identify regular or chaotic orbits and also
orbits exhibiting a temporarily regular and then chaotic behaviour. Then, we
focus on a numerical investigation of the Bohm–Vigier (Bohm and Vigier 1954
Phys. Rev. 26 208) theory, that an arbitrary initial particle distribution P should
asymptotically tend to |ψ |2, by considering the role of chaotic mixing in causing
irregularity of Madelung’s flow, a necessary condition for P to tend to |ψ |2. We
find that the degree of chaos of a particular system correlates with the speed of
convergence of P to |ψ |2. In the case of wave-packet dynamics, our numerical
data show that the time of convergence scales exponentially with the inverse of
the effective perturbation from the harmonic oscillator Hamiltonian. The latter
result can be viewed as a quantum analogue of Nekhoroshev’s (Nekhoroshev
1977 Russ. Math. Surveys 32 1) theorem of exponential stability in classical
nonlinear Hamiltonian dynamics.

PACS numbers: 05.45.Mt, 03.65.Ta

1. Introduction

The so-called ‘causal’or ‘ontological’ interpretation of quantum mechanics (de Broglie 1926a,
1926b, 1927a, 1927b, Bohm 1952a, 1952b) is a version of quantum mechanics based on orbits,
which gives equivalent results with the usual (Copenhagen) quantum mechanics. Details of
this theory are provided in the books of Bohm and Hiley (1993) and Holland (1993).
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The de Broglie–Bohm theory was criticized by Pauli (1953), Keller (1953), von Neumann
(see Jammer (1974)), Kochen and Specker (1967) and others. Replies to these criticisms
were provided by Dewdney and Malik (1993), and in the above books of Bohm and Hiley
and Holland. In particular, Holland (1993, pp 24–6) provided detailed answers to the various
criticisms of Bohm’s theory. Another detailed discussion of criticisms was made by Passon
(2005), who also included extensive references.

Some people think that Bohm’s theory is a ‘hidden variables’ theory that can be refuted by
the violation of Bell’s inequalities (Bell 1965, 1976, 1987), which was verified experimentally
by Aspect et al (1982). However, Bell’s theorem excludes only local hidden variables, while
Bohm’s theory is nonlocal (see, for example, Dewdney (1992)). In fact, Bell was always an
advocate of Bohm’s theory.

The main postulates of Bohmian mechanics are
(a) The electron (or any other small particle) has a well-defined position that follows a

causally defined trajectory guided by a physically real field, the ψ(�r, t) field.
(b) The ψ-field satisfies Schrödinger’s equation(

−1

2
∇2 + V (�r, t)

)
ψ = i

∂ψ

∂t
(1)

where we have taken m = h̄ = 1.
(c) The particle’s orbit is determined by the initial particle’s position and by the pilot-wave

equation of motion

d�r
dt

= Im

(∇ψ(�r, t)
ψ(�r, t)

)
. (2)

This equation implies Newton’s equation of motion in a potential

U(�r, t) = V (�r, t) + Q(�r, t) (3)

where Q(�r, t) is the ‘quantum potential’, i.e., an extra term in the potential that guides the
particle’s motion. The quantum potential is derived by the ψ-field:

Q(�r, t) = −1

2

∇2|ψ |
|ψ | . (4)

(d) The probability distribution of an ensemble of particles guided by the same ψ-field is
P(�r, t) = |ψ(�r, t)|2.

Bohmian orbits defined as above are equivalent to the streamlines of a quantum probability
flow (Madelung 1926), a fact that allows one to formulate quantum mechanics in terms of the
orbits of the fluid elements in a quantum hydrodynamical model (Skodje et al 1989, Holland
2005). Thus, the dynamical behaviour of these orbits is of interest both in the conventional
and in the Bohmian versions of quantum mechanics.

The nonlocality of the Bohmian mechanics proceeds from the fact that the particle orbits
depend on the ψ-field which is given as a solution of the Schrödinger equation independently
of the positions and the motions of the particles. In particular, the ψ− field is not generated
by particles as in the case of electromagnetism.

While postulates (a)–(c) lead to the same results as in the usual quantum mechanics,
postulate (d) has received particular criticism (Pauli 1953, Keller 1953), based on the following
remarks. If the initial distribution P(x, 0) is selected as P(x, 0) = |ψ(x, 0)|2, the equation
P(x, t) = |ψ(x, t)|2 is fulfilled at any later time t. This follows trivially from the properties
of the Madelung flow. However, as emphasized by Bohm and Hiley (1993), the particles’
distribution is not the source of the ψ-field. Therefore, while in quantum fluid dynamics
the initial distribution of the fluid elements is by definition equal to |ψ(x, 0)|2, in Bohmian
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mechanics the initial particle distribution P(x, 0) can be an arbitrary distribution, different in
general from |ψ(x, 0)|2. In that case, it may be that P(x, t) and |ψ(x, t)|2 do not become
identical at some later time t.

In order to address this point, Bohm (1953) considered random collisions of the particles,
that form the initial distribution P(x, 0), with other particles or external fields. These collisions
change P(x, t) in such a way that it will converge to |ψ(x, t)|2. However, such an approach
introduces an effect which is outside the ensemble of the particles themselves. On the other
hand, Bohm and Vigier (1954) have developed a statistical mechanics of particles following
Bohmian orbits. They assert that, independently of the choice of P(x, 0), P (x, t) will tend
asymptotically to |ψ(x, t)|2 as t → ∞, on the assumption that the Madelung’s flow satisfies
a mixing property, namely that “a fluid element starting in an elementary element of volume
dx ′, in a region where the fluid density is appreciable, has a nonzero probability of reaching
any other element of volume dx in this region” (Bohm and Vigier 1954).

One way to justify this assumption is by considering the statistical properties of systems
with a large number of interacting degrees of freedom. Valentini (1991) has put forward
a relevant argument, assuming that systems composed by a large number of interacting
degrees of freedom have the mixing property. Another approach to the same problem was
undertaken by Dürr, Goldstein and Zanghi (1992a, 1992b). These authors have argued that
the |ψ |2 distribution in Bohmian mechanics is an ‘equilibrium’ distribution, similar to the
thermodynamical equilibrium in statistical mechanics, that arises naturally in a ‘Bohmian
universe’ for typical configurations of the ‘universe’.

These approaches notwithstanding, the theory of Bohm and Vigier, in its original
formulation, does not depend on the number of degrees of freedom of a quantum system.
Thus, it is of interest to study the extent of its applicability also in systems with a small
number of degrees of freedom. In section 3 of Bohm and Vigier (1954) arguments are given
that the mixing behaviour of the probability fluid, which is described by Bohmian orbits, is
a generic property in quantum mechanical systems that should be expected as a result of the
very irregular character of Madelung’s flow. In the authors’ words, “it is clear that if we
followed a given fluid element, we would discover that it undergoes an exceedingly irregular
motion, which is able in time to carry it from any specific trajectory of the mean Madelung
motion to practically any other trajectory”. This description was refined by Bohm and Hiley
(1993), by stressing the fact that in most quantum systems the quantum potential undergoes
such rapid fluctuations, in space and time, that Bohmian orbits should be expected to show
chaotic behaviour.

The meaning of chaos in quantum mechanics is still an open question. This is reflected in
the variety of definitions of quantum chaos, or quantum integrability, that exist in the literature.
Well-known examples are

(a) In the book of Gutzwiller (1990), quantum chaos is determined in terms of the
difference in the quantum behaviour between systems which are classically integrable or
classically chaotic. Such differences are manifested in a number of quantum properties such
as the degree of repulsion of the energy levels (quantified by a Poisson or Wigner distribution),
the irregularity of nodal patterns for particular quantum states, or the different dynamical
behaviour of Wigner-type distributions of wave packets, which are quantum analogues of the
classical Liouville phase-space density.

(b) A definition of quantum integrability based on the existence of a sufficient number
of globally defined, non-singular operators with vanishing commutators (see Robnik (1986)
for a review) corresponds to the fact that a system which is quantum integrable in the above
sense shows localization of the eigenfunctions on a set of invariant tori of the corresponding
classical system that can be approximated by a semiclassical quantization procedure (see also
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Berry (1979)). However, as emphasized by Robnik (1986), localization of the eigenfunctions
is also manifested in classically chaotic systems (e.g., the stadium billiard), therefore it is not
a property of only integrable systems.

(c) There is a theorem by Kosloff and Rice (1981) which claims that bounded quantum
mechanical systems cannot have chaotic motion. As shown by Manz (1989), this claim can
be based on the linearity of the Schrödinger equation itself.

The above definitions notwithstanding, Bohmian mechanics defines quantum chaos as
a genuine quantum property, i.e., a property of the orbits evolving under the action of the
quantum potential, which is irrespective of the behaviour of orbits in the corresponding
classical potential. In particular, systems which are classically integrable, or very close to
integrable, may exhibit a large degree of chaos in the Bohmian sense, because of fluctuations
of the quantum potential Q. The opposite is also possible as we will see in section 3. Namely,
classically chaotic systems may not be chaotic quantum-mechanically.

Quantum chaos in the framework of Bohm’s theory was considered by Dürr et al (1992a).
Further work on this problem was done by Schwengelbeck and Faisal (1995) and Parmenter
and Valentine (1995). These two papers defined quantum chaos of Bohmian orbits in terms of
the Lyapunov characteristic number (LCN, see section 2), or the Kolmogorov entropy, which
is equal to the sum of positive Lyapunov numbers. The first application of this method was on
the quantum kicked rotor, i.e., the quantum standard map (Schwengelbeck and Faisal 1995).
They found that this system has zero LCN, thus it should not be chaotic. The same result was
found by Dewdney and Malik (1996), who, however, found chaos in the Bohmian orbits of
the kicked rotor system when the latter is repeatedly interacting with a measuring apparatus.
On the other hand, Faisal and Schwengelbeck (1995) found that a quantum generalization of
Arnold’s cat map has positive LCN, thus it is chaotic. An explanation of this difference of
behaviour between these two maps will be provided in section 3.

Parmenter and Valentine (1995) found quantum chaos in a very simple classically
integrable system (uncoupled oscillators). They found chaos if (a) the system has at least
two degrees of freedom and (b) the ψ-field is a solution of Schrödinger’s equation defined as
the superposition of at least three stationary states, where at least one pair of these states have
incommensurable eigenvalues. But they also claimed that all aperiodic orbits in a ψ-field with
the above conditions are chaotic. However, as shown in the present paper (section 3), their
conclusion is an artefact of a wrong method used to measure chaos, while a correct calculation
of the LCN indicates that there are both regular or chaotic aperiodic orbits in this quantum
system.

On the other hand, Wu and Sprung (1999) provided numerical evidence that all orbits in
ψ-fields consisting of the superposition of stationary states with commensurable eigenvalues,
as for example in 2D billiards with commensurable lengths of the billard’s sides, are periodic,
thus they exhibit no chaos. Makowski et al (2000) found chaos in some cases represented
by only two stationary states in a system of two degrees of freedom, while Parmenter and
Valentine (1997) found that we may have chaos in the case of even one stationary state, if the
number of degrees of freedom is at least 4.

Ordered (quasi-periodic) and chaotic orbits in quantum systems corresponding to
classically integrable systems were also found by de Sales and Florencio (2003). These
authors calculated the forms of the orbits, the power spectrum and the Lyapunov characteristic
numbers. They also calculated two surfaces of section, but rather incompletely (only for two
orbits in each case). A more complete treatment was given by Iacomelli and Pettini (1996),
who not only found chaotic motion, but also calculated a kind of threshold between order and
chaos in a particular case (a hydrogen atom interacting with an oscillating electric field) as a
function of a nonlinearity parameter. These authors stress the fact that (Bohmian) quantum
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chaos exists even at the integrable limit of the classical system; however, quantum chaos
increases considerably at the threshold where the classical system becomes largely chaotic.
Thus, in that case classical chaos also seems to enhance quantum chaos. The threshold between
order and chaos was also considered by Sengupta and Chattaraj (1996) in a Hénon–Heiles
Hamiltonian.

A quite different case is that of Bohmian orbits in ψ-fields produced by the time evolution
(by Schrödinger equation) of initially minimum uncertainty coherent states. Wisniacki et al
(2003) calculated sets of Bohmian orbits in such a model and found their probability
distribution P that is to be compared with the probability distribution |ψ |2 derived by the
ψ-field. These authors conclude that there is a general tendency to agreement between P and
|ψ |2, although the details of the two distributions are not the same (e.g., the survival probability
function, determined by the Wigner function, shows some maxima in the case of the Bohmian
distribution P that are not present in the distribution |ψ |2). Further work on wave packets
was done by de Polavieja (1996), who found that there are both regular and chaotic orbits in
a wave packet evolving in a Yang–Mills-type potential, and by Falsaperla and Fonte (2003),
who considered orbits near the nodal lines of a time-independent wave packet. In particular,
de Polavieja (1996) found Bohmian orbits which are ordered for some intervals of time and
chaotic during other intervals of time. As we will see in section 3, the numerical evidence
is that, after some initial transient interval of time, the LCN tends to stabilize to a limiting
value for a time of integration long enough, so that an orbit can be definitely characterized as
ordered or chaotic.

A final case is that of the two-slit experiment. While the maxima of the density of
Bohmian orbits in this experiment reproduce an interference pattern (Philippidis et al 1979),
these orbits do not cross. Therefore, they do not fulfil the mixing hypothesis of the Bohm–
Vigier theory. Oriols et al (1996) also emphasize the consequences of non-crossing Bohmian
orbits. However, Holland and Philippidis (2003) found that a spin-dependent term changes the
results so that two orbits may cross each other and the axis of symmetry. Another difficulty, as
regards the definition of chaos in two-slit experiments, is that the phase space is not compact
(see section 2).

The purposes of the present paper are the following:
(1) We seek to clarify the meaning and the degree of chaos in Bohmian mechanics. This

subject is not yet completely clarified. As Holland (1993) remarks, “classifying the quantum
paths, . . . , and defining analogues of Kolmogrov entropy is a largely uncharted territory”. To
this end, we first explain how the classical notion of chaos should be implemented in the case
of Bohmian orbits. Then we study the orbits in 2D systems, some of which are or are not
classically integrable. In particular, we consider three basic cases: (a) a superposition of three
stationary states in 2D uncoupled harmonic oscillators with incommensurable frequencies,
(b) a coherent wave packet in the Hénon–Heiles and in the integrable Hénon–Heiles 2D
Hamiltonian and (c) a modified two-slit experiment. In these systems, we identify regular
and chaotic orbits, as well as orbits that exhibit a temporarily regular and then chaotic
behaviour.

(2) We numerically examine the extent of validity of the Bohm–Vigier theory, in
connection with the regular or chaotic character of ensembles of orbits guided by a particular
ψ-field. One particular example, where the particle distribution P tends to the |ψ |2 distribution
in a square box potential, was given by Valentini and Westman (2005). In the present paper,
we identify cases when (a) P and |ψ |2 tend to coincide asymptotically in time or (b) do not
coincide at any time. In the case where P tends to |ψ |2 asymptotically, the time of relaxation
correlates with the Lyapunov time of orbits. A similar result was found by Bowman (2002) in
a kicked rotator model.
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(3) We also find that in ψ− fields formed by initially coherent states, the convergence
between P and ψ2 starts taking place as soon as the packet starts losing its coherence. In the
case of two harmonic oscillators coupled with a nonlinear perturbation, the numerical evidence
is that this happens at times exponentially long in the inverse of the effective perturbation.
This result is a quantum analogue of Nekhoroshev’s (1977) exponential stability of orbits
in classical Hamiltonian dynamics. On the other hand, in the case of uncoupled harmonic
oscillators the packets are known to remain coherent for all times.

The paper is organized as follows: section 2 gives a definition of chaotic orbits in terms
of the Lyapunov characteristic number. We stress the necessary conditions for the appearance
of chaos in systems with time-dependent potentials (classical or quantum). Section 3 presents
the calculation of ordered and chaotic orbits in the quantum systems mentioned in (1) above.
In section 4, we numerically check whether the probability P tends to |ψ |2 as required by
the Bohm–Vigier theory in the same systems. We also provide evidence that the approach
of P to |ψ |2 occurs at exponentially long times, as in the Nekhoroshev theorem. Finally,
we find a correlation between the degree of applicability of the Bohm–Vigier theory and the
regular or chaotic character of the associated Bohmian orbits. Section 5 summarizes the main
conclusions of the present study.

2. Chaos in time-dependent potentials

The usual notion of chaos (see Contopoulos (2004) for a review) refers to orbits that satisfy
the following two conditions:
(a) they are embedded in a compact phase space;
(b) they show extreme sensitivity to the initial conditions.

Property (b) is usually quantified by the Lyapunov characteristic number (LCN), which
measures the growth rate of deviations between nearby orbits. In the case of chaotic
orbits, deviations grow exponentially in time, while in the case of regular orbits they grow
algebraically (usually linearly) in time. However, property (b) alone is not sufficient for the
characterization of an orbit as chaotic; property (a) is also necessary. The importance of the
compactness condition (implying that the phase-space volume that is accessible to the orbit is
finite) can be demonstrated by the following elementary example. Consider the one degree of
freedom Hamiltonian:

H = 1
2

(
p2

x − x2
)
. (5)

Except for a residual set of orbits approaching asymptotically the origin, all other orbits in this
Hamiltonian, and their deviations, grow exponentially in time, i.e., asymptotically as et . Thus,
the Lyapunov characteristic number is positive (LCN = 1) . However, the system is integrable
and exhibits no chaos. But the phase space of this system is not compact, as the level curves of
constant energy are hyperbolas, or straight lines. Therefore, one cannot speak about chaos in
such a system, even though the LCN can be defined for all orbits and it is generically positive.

A second example refers to the orbit of a distant star that crosses a gravitationally bound
stellar system, e.g., a galaxy. As long as the star is far from the galaxy, the star ‘feels’ the
galaxy almost as a point mass, i.e., the force on the star is effectively Keplerian. When the star
comes close to the galaxy, it may be chaotically scattered by it. However, after the scattering
the star goes away from the galaxy and the force becomes again Keplerian. Thus, the LCN
tends asymptotically to zero, while the orbit has definitely undergone an interval of chaotic
motion. In that case too we cannot speak about chaos as the phase space is not compact, but
we can only speak about chaotic scattering of the orbit.
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Assuming that condition (a) is fulfilled, the Lyapunov characteristic number is calculated
as follows (Benettin et al 1976). Given a set of evolution equations

dx
dt

= f(x, t) (6)

(where x is n dimensional), one determines the set of variational equations

dδx
dt

= ∇xf(x, t)δx (7)

that are to be solved together with the original equations. One then calculates the limit

LCN = lim
t→∞

1

t
ln

ξ(t)

ξ(0)
(8)

where ξ(t) is the norm of the deviation vector

ξ(t) =
√

δx2
1(t) + · · · + δx2

n(t). (9)

(Other metrics in the definition of ξ(t) give the same LCN in general.) If α = LCN > 0,
the deviations grow on the average exponentially, as ξ(t) = ξ(0) eαt , and the orbit is called
chaotic. On the other hand, if LCN = 0, the deviations can grow at most as a power law
(usually, they grow linearly in time, i.e., ξ(t) = ξ(0) + At with A = const).

Numerically, one cannot calculate exactly the limit (8), but only a finite-time Lyapunov
number

χ(t) = 1

t
ln

ξ(t)

ξ(0)
(10)

for a time t much larger than the characteristic dynamical time of the system. There is therefore
only an indication that an orbit is regular or chaotic. Namely, along regular orbits χ(t) behaves
as the asymptotic limit of ln t/t , i.e. χ(t) ∝ 1/t , while along chaotic orbits the quantity χ(t)

tends to stabilize at a final value.
In Hamiltonian systems with time-dependent potentials

H(q, p, t) = p2

2
+ V (q, t) (11)

one may consider an extended phase space in which time is one more canonical variable, with
energy being its canonical momentum. The question is whether these variables should be
taken into account in the variational equations. The answer is that the results with or without
taking them into account are equivalent. This is because energy deviations can grow only
linearly, so that the length of the deviation vector in the extended phase space, say ξ ′(t), is
given by ξ ′(t) = ξ(t) + Bt = eαt + Bt . Thus, ξ ′(t) gives the same LCN as ξ(t). An example
of this type of calculation is given in figure 1, referring to the Duffing-type Hamiltonian

H(x, p, t) = p2

2
− x2

2
+

ε

4
x4 − Bx cos(ωt) (12)

where ω = (
√

5 − 1)/2, ε = 0.25, B = 0.1. Figure 1(a) shows four orbits in a stroboscopic
Poincaré surface of section (x(mT ), p(mT )), with m = 1, 2, . . . and T = 2π/ω. Figure 1(b)
shows a calculation of the LCN by the χ(t) method for these orbits. Thus, we find that χ(t)

falls asymptotically as 1/t for the regular orbits A, C, D which define invariant curves on
the Poincaré surface of section (figure 1(a)). On the other hand, χ(t) tends to stabilize at a
positive value for the chaotic orbit B.

Some people claim to calculate the Lyapunov characteristic number by considering the
sum of the greatest real parts of the eigenvalues of the Jacobian matrix corresponding to the



1826 C Efthymiopoulos and G Contopoulos

(a)

(b) (c)

Figure 1. (a) Stroboscopic Poincaré surface of section for orbits in the Hamiltonian (12). The initial
conditions of the orbits are (A) x = 2.3, px = ẋ = 0, (B) x = 0.3, px = 0, (C) x = −1, px = 0,
(D) x = 0, px = 2. (b) The time evolution of the function χ(t) (equation (10)) for the same orbits.
(c) The time evolution of the quantity σN (equation (13)) for the same orbits.

variational equations of motion. For example, Parmenter and Valentine (1995) define the
quantity

σN = 1

N

N∑
n=1

(Re λn)max (13)

where (Re λn)max is the greatest real part of the eigenvalues of the Jacobian matrix Jn of the
variational equations at the nth integration step. It is then claimed that LCN = limN→∞ σN .
However, this claim is not correct as the variational vector δx is not parallel to the direction
of the eigenvector with the largest positive eigenvalue, but it is always tangent to an invariant
curve, for regular orbits, or an asymptotic curve for chaotic orbits (Voglis et al 1998). For
example, the Jacobian matrix of the variational equations for the Hamiltonian (12)

J (t) =
(

0 1
1 − 3εx(t)2 0

)
(14)
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yields the eigenvalues λ = ±
√

1 − 3εx(t)2, which are real in the interval
(− 1√

3ε
� x(t) �

1√
3ε

)
(in the zone between the dashed lines of figure 1(a)). If an invariant curve happens to

partially belong to this zone, the quantity σN is positive for an orbit on this curve, thus it cannot
be equal to the LCN which is zero. For example, figure 1(c) shows the quantity σN for the
four orbits A, B, C, D. The result with σN is correct for the orbits A (regular, outside the zone)
and B (chaotic). However, σN turns out to be positive for the regular orbits C, D which cross
the zone, although these orbits are ordered. Therefore, the quantity σN is not a good criterion
for chaos.

3. Ordered and chaotic orbits in Bohmian mechanics

Having determined the method that we use for the characterization of orbits, we proceed now
in examining the Bohmian orbits in a number of characteristic examples of quantum systems.

3.1. Uncoupled oscillators with incommensurable frequencies

Our first example refers to Bohmian orbits in the Hamiltonian:

H = 1
2

(
p2

x + p2
y

)
+ 1

2k(x2 + (ωy)2) (15)

that was used by Parmenter and Valentine (1995) to define deterministic chaos in Bohmian
mechanics. Setting k = 1, ω = √

2/2, the spectrum of eigenvalues is given by

En,m = (
1
2 + n

)
+

(
1
2 + m

)√
2

2 (16)

where both n and m are natural numbers 0, 1, 2, . . . . The corresponding eigenfunctions are

ψn,m(x, y, t) = e−iEn,mt exp

(
−x2 + y2/2

2

)
Hn(x)Hm(

√
2y/2) (17)

where Hn(x) is the nth Hermite polynomial. Parmenter and Valentine study Bohmian orbits
in the ψ-field created by the superposition of three such stationary states:

ψ(x, y, t) = ψ0,0(x, y, t) + aψ1,0(x, y, t) + bψ1,1(x, y, t). (18)

The corresponding quantum potential (equation (4)) is time dependent. In fact, for any choice
of eigenvalues with n,m �= 0, the time dependence of the quantum potential is through
trigonometric functions ei(µ+λω)t , with µ, λ being the integers. Since ω is an irrational number,
there is no period t = T that is the same for all trigonometric terms. Therefore, this can be
called an ‘aperiodic’ potential.

Figures 2 and 3 refer to the calculation of the Lyapunov characteristic number for Bohmian
orbits in the ψ-field (18). Figures 2(a) and 3(a) show the same orbits as figures 1 and 3 of
Parmenter and Valentine (1995), calculated for a longer time (t � 1000 and t � 300,
respectively). The irregular pattern of the orbit of figure 2(a) indicates that this orbit is
chaotic. On the other hand, the orbit of figure 3(a) looks very regular. In fact, this orbit is
reminiscent of classical ‘box’ orbits in perturbed harmonic oscillators with incommensurable
frequencies, i.e., the orbit fills a deformed parallelogram (see, for example, Contopoulos
(2004)). However, classical box orbits have reflections only on the edges of the deformed
parallelogram, while the orbit of figure 3(a) has many reflections of y(t) that take place in the
interior of the parallelogram. Therefore, this orbit should be distinguished from a classical
box orbit.

Now, based on a computation of the Lyapunov characteristic number, Parmenter and
Valentine claim that both these orbits are chaotic, with σN 	 1.1 (equation (13)) for the first
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(a) (b)

Figure 2. (a) A Bohmian orbit with initial conditions x0 = y0 = 0.1 in the ψ-field (18), with
a = 1, b = 8, which is a solution of Schrödinger’s equation in the Hamiltonian (15) with c = √

2/2.
The orbit is plotted for a time 0 � t � 1000. (b) The time evolution of the quantity χ(t) for the
same orbit and a longer time (t � 10000). The initial conditions for the variational equations are
δx = 1, δy = 0.

(a) (b)

Figure 3. Same as in figure 2, for initial conditions x0 = 0.5, y0 = 0.25, δx = 1, δy = 0 and
a = b = 1, c = √

2/2. The orbit in (a) is plotted for t � 300.

orbit and σN 	 0.3752 for the second orbit. However, their calculation is based on adding the
eigenvalues of the local Jacobian matrices of the variational equations, and, as demonstrated
in section 2, this method does not give the correct LCN. If, instead, one follows the correct
definition of the LCN (equations (8) and (9)) based on integration of the variational equations,
one finds that the orbit of figure 2(a) is chaotic, while the orbit of figure 3(a) is regular.
Figure 2(b) shows the calculation of the LCN for the orbit of figure 2(a) with a numerical
solution of the variational equations. The quantity |χ(t)| initially makes large oscillations.
In fact, without the absolute value, χ(t) oscillates between positive and negative values, so
that each crossing of the axis χ(t) = 0 corresponds to a sudden dropping of |χ(t)| (on a
logarithmic scale) to very small positive values. Such droppings are seen in figure 2(b) for
times smaller than t = 100. However, for times larger than t = 100, the quantity χ(t)

stabilizes at a positive value. This limiting value corresponds to LCN 	 0.1, which is quite
different from the value 1.1 found by Parmenter and Valentine, by use of the quantities σN

instead of the correct LCN (equations (8) and (9)), but this quantitative difference does not
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change the qualitative conclusion that the orbit is chaotic. However, this is not so in the case
of the orbit of figure 3(a). In figure 3(b), we plot the logarithm of the absolute value ln|χ(t)| in
order to see the asymptotic behaviour of the magnitude of χ(t) on a logarithmic scale. Clearly,
the magnitude of χ(t) decreases as t increases, and the decrease asymptotically follows the
power-law χ(t) ∼ 1/t . This means that the orbit is ordered and LCN = limt→∞ χ(t) = 0.
On the other hand, by repeating the calculation of Parmenter and Valentine, based on the
quantity σN , we also found a positive value (σN 	 0.3). This would erroneously lead to the
characterization of the orbit as chaotic, while in fact this orbit is ordered.

In classical mechanics, regular box orbits preserve an additional integral of motion besides
the energy. This is usually called a ‘third integral’ (Contopoulos 1960) and it is a series in
the canonical variables. Third integrals in classical time-dependent systems were calculated
by Contopoulos (1966). In the present case, this series contains time-dependent trigonometric
terms depending on two incommensurable frequencies. A detailed calculation of this series
will be presented in a future paper.

Another important point that should be stressed here regards the difference between
classical and (Bohmian) quantum chaos. The classical equations of motion are second-order
ordinary differential equations. Thus, in order for chaos to appear, a system must be at least
(a) two dimensional with time-independent potential V (x, y) or (b) one dimensional with a
time-dependent potential V (x, t). On the other hand, the pilot equations (2) are first-order
ordinary differential equations. Thus, if a system is one dimensional, it cannot exhibit Bohmian
chaos independently of whether its classical potential is time dependent or not. In fact, in
a one-dimensional system, the solution of Schrödinger’s equation (1) is always a function
ψ(x, t) that depends both on x and t, independently of whether the potential V explicitly
depends on time or not. It follows that the Bohmian equation of motion (2) is of the form

dx

dt
= f (x, t) (19)

with some function f (x, t). Thus, solutions to this equation cannot exhibit chaos.
This simple remark explains why Schwengelbeck and Faisal (1995) find no chaos in the

Bohmian orbits of the kicked rotor Hamiltonian, which is the quantum analogue of the strongly
chaotic classical standard map, while they find chaos (Faisal and Schwengelbeck 1995) in the
quantum cat map. Namely, classically both the standard map and the cat map are paradigms
of chaotic two-dimensional systems. On the other hand, quantum mechanically, in the case of
the standard map the ψ-field is a solution of the time-dependent Schrödinger equation for the
kicked rotor Hamiltonian(

−1

2

∂2

∂θ2
+ k cos θ

∞∑
N=−∞

δ(t − NT )

)
ψ = i

∂ψ

∂t
(20)

with k = const, which yields a one dimensional and time-dependent wavefunction (ψ(θ, t)).
Thus, the equation of motion, derived from equation (2), is a first-order, one-dimensional and
non-autonomous equation of the form

dθ

dt
= f (θ, t)

which cannot exhibit chaos. On the other hand, in the case of the quantum Arnold cat map,
the ψ-field is a solution of the time-dependent Schrödinger equation(

−1

2
∇2 − i

2
(∇ · V · x + x · V · ∇)

∞∑
N=−∞

δ(t − NT )

)
ψ = i

∂ψ

∂t
(21)
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(a) (b)

Figure 4. (a) Poincaré section for an orbit with initial conditions x0 = px0 = 1 in the Hamiltonian
(22) with ω = (

√
5−1)/2, ε = 3 and 2σ 2 = 5. (b) The evolution of χ(t) for a Bohmian orbit with

the same initial conditions guided by a ψ-field which is initially a minimum uncertainty coherent
state centred at (x0, px0).

where x ≡ (x1, x2),∇ = (
∂

∂x1
, ∂

∂x2

)
and V is a 2 × 2 matrix defined by eV = C, with

C11 = C12 = C21 = 1 and C22 = 2. Thus, the solution of equation (21) is a two dimensional
and time-dependent function ψ(x1, x2, t), which yields, through equation (2), a system of two
first-order, non-autonomous, equations of motion of the form

dx1

dt
= f1(x1, x2, t)

dx2

dt
= f2(x1, x2, t).

Such a system may in principle yield chaos, as indeed found by these authors.
In order to numerically demonstrate the above remark, figure 4(a) shows the classical

Poincaré surface of section of the Hamiltonian

H = 1

2
(p2 + x2) +

ε

4
x4 exp(−x2/2σ 2) cos(ωt) (22)

for ω = (
√

5 − 1)/2, ε = 3 and 2σ 2 = 5, in which the potential is one dimensional and time
dependent. As shown in the Poincaré section of figure 4(a), an orbit with initial conditions
x0 = px0 = 1 fills a large chaotic domain, leaving space only for some small islands of stability.
However, if one calculates a Bohmian orbit with the same initial conditions (x0, px0), when
the ψ-field is an initially minimum uncertainty coherent state centred at (x0, px0), this orbit
is regular, as indicated by the fall of χ(t) as ∼1/t (figure 4(b)). This is because the classical
system is of one and a half degrees of freedom, while the corresponding quantum system is of
one degree of freedom. Therefore, the classical system (20) is chaotic, while the corresponding
quantum system is ordered.

As a conclusion, the difference found by Schwengelbeck and Faisal (1995) between the
quantum standard map and the quantum cat map is not due to some different intrinsic property
of the two maps, but simply to the different dimensions of the ψ-field in these two cases.

At any rate, the main conclusion drawn in this subsection is that a system which is
classically integrable (two harmonic oscillators) may have chaotic Bohmian orbits, and vice
versa, a system which is classically almost completely chaotic may exhibit no chaos in its
Bohmian orbits. It should be noted, however, that the latter case is very improbable in systems
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of more than one degrees of freedom. Namely, if a system of two or more degrees of freedom
is classically chaotic, its Bohmian orbits, for a generic choice of guiding ψ-field, are likely to
be also chaotic.

3.2. Wave packets in Hénon–Heiles Hamiltonians

The example of the previous subsection refers to a choice of the ψ-field corresponding to the
extreme case of superposition of a small number (three) of eigenfunctions. Our next example
refers to the other extreme case, in which infinitely many eigenfunctions are superposed to
form a Gaussian wave packet or coherent state. This case is interesting from two points of
view:

(a) As long as the wave packet maintains its coherence, the Bohmian orbits are relatively
simple: they just follow the motion of the packet, thus they resemble to the orbits of the
Ehrenfest theorem. On the other hand, from the moment when the wave packet loses its
coherence, the ψ-field becomes quite irregular. This is reflected in the Bohmian orbits
becoming chaotic. Namely, the same Bohmian orbit looks regular for a transient period of
time, that is equal to the packet’s coherence time, while later on the orbit becomes chaotic.

(b) It is well known (Feit and Fleck 1984, Founargiotakis et al 1989) that an initially
coherent packet may develop quite irregular nodal patterns in a short time period, even when
the classical dynamics of the underlying Hamiltonian is close to, or exactly, integrable. In this
case too we can speak about chaos as a genuine quantum phenomenon, that is, not related to
the chaos of classical dynamics.

In order to study these phenomena, we solve numerically, with a split-step Fourier method
(Feit et al 1982), the 2D time-dependent Schrödinger equation (equation (1)) for the non-
integrable Hénon–Heiles Hamiltonian:

H = 1
2

(
p2

x + p2
y

)
+ 1

2 (x2 + y2) + λx
(
y2 − 1

3x2
)

(23)

with λ = 0.111 8034 as in Feit and Fleck (1984), setting as initial condition of the ψ-field a
minimum uncertainty wave packet

ψ(x, y, 0) = exp
(− 1

2 [(x − x0)2 + (y − y0)2 + i(px0x + py0y)]
)
. (24)

According to Ehrenfest’s theorem, this packet moves for a short period of time preserving its
shape, with the centre of mass moving along a classical orbit in the respective Hamiltonian
with initial conditions (x0, y0, px0, py0). If λ = 0, in the Hamiltonian (24), the packet remains
coherent for an infinitely long time. On the other hand, if λ �= 0 the packet is expected to lose
its coherence within a finite time. An example is shown in figure 5, referring to wave packets
of the form (25) in the Hamiltonian (24) with initial conditions

x0 = y0 = px0 = py0 = ρ

2
and ρ = 1.3 (figure 5(a)), ρ = 2 (figure 5(b)) and ρ = 3 (figure 5(c)). These panels show the
evolution of the respective wave packets at three different time snapshots. The wave packet for
ρ = 1.3 (figure 5(a)) partly maintains its coherence up to the time of the last plotted snapshot,
t = 270. At t = 180, the packet splits in two parts, which are later joined again (t = 270).
This splitting and rejoining of the packet is repeated a number of times after t = 270. For ρ

larger (ρ = 2, figure 5(b)), the initial packet develops a number of new maxima already at
time t = 90. The structure formed shows rotation as a whole (t = 180), while it also merges
from time to time to an apparently unique maximum (e.g., at t = 270). Finally, for ρ still
larger (ρ = 3, figure 5(c)), the packet splits quickly by developing a number of local maxima
joined by a quite irregular nodal pattern.
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Figure 5. Time evolution of the wave packets given by the initial conditions of equation (24) in
the Hamiltonian (23), for (a) ρ = 1.3, (b) ρ = 2 and (c) ρ = 3. The three panels in each row
correspond to three different time snapshots t = 90, t = 180 and t = 270.

Figures 6(a)–(c) show the Poincaré surfaces of section (x, ẋ ≡ px) for y = 0, ẏ > 0
corresponding to the classical Hamiltonian equations of motion with energy equal to E =
H(x0, y0, px0, py0), where (x0, y0, px0, py0) are chosen as in figures 5(a)–(c) respectively.
The main remark here is that in all three cases the classical Poincaré surfaces of section are
filled with invariant curves and no appreciable chaos is visible. In fact, some chaos exists in all
three cases since the Hamiltonian (23) is not integrable. However, this chaos is located only
on very thin layers that correspond to the homoclinic tangle formed by the unstable manifolds
of Poincaré–Birkhoff chains of unstable periodic orbits. These chaotic layers resemble to
separatrices, but with some width not visible in the scale of figures 6(a)–(c). It follows
that the splitting of the wave packets, resulting in the gradual loss of coherence observed in
figure 5, cannot be assigned to a chaotic mechanism in the corresponding classical dynamics.

Now, returning to Bohmian mechanics, figures 7(a) and (b) show the Bohmian orbit with
initial conditions (x0, y0) as in the wave packet of figure 5(a), for a short time (t � 200,
figure 7(a)) and long time (t � 1000, figure 7(b)), respectively. Since the pilot-wave
equations (2) are first-order ODEs, the initial positions (x0, y0) are the only required initial
conditions. Nevertheless, substitution of the wave packet (equation (24)) into the pilot-wave
equations yields the initial velocities of the respective Bohmian orbits (ẋ0, ẏ0) = (px0, py0),
which are precisely the same initial conditions as in the classical equations of motion.
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(a) (b) (c)

Figure 6. Poincaré surfaces of section (x, ẋ ≡ px) for y = 0, ẏ > 0 corresponding to the
classical Hamiltonian equations of motion with energy equal to E = H(x0, y0, px0, py0), where
(x0, y0, px0, py0) are chosen as in figures 5(a)–(c), respectively.

(a) (b)

(c)

Figure 7. A Bohmian orbit with initial conditions x0 = y0 = ρ/2 with ρ = 1.3 in the guiding
field corresponding to the wave packet of figure 5(a). (a) The orbit for t � 200, (b) the orbit for
t � 1000 and (c) the time evolution of χ(t) for the solution of the variational equations with initial
conditions δx0 = 1, δy = 0.

The main phenomenon seen in figures 7(a) and (b) is the increasingly irregular shape
acquired by the respective Bohmian orbit as its guiding packet gradually loses coherence.
Thus, the orbit looks like a regular orbit for a transient time interval (t � 200), while
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(a) (b)

Figure 8. (a and b) Same as in figures 7(b) and (c), for the Bohmian orbit with initial conditions
x0 = y0 = ρ/2 with ρ = 3 in the guiding field corresponding to the wave packet of figure 5(c).

later the orbit starts spreading chaotically and explores a much larger area in configuration
space. A calculation of the LCN shows that this orbit is chaotic. In fact, the quantity χ(t)

(figure 7(c)) tends to a positive value at the end of the numerical integration (t = 1000).
However, before reaching this value, χ(t) undergoes a number of jumps from an initially low
value to progressively larger values. Such jumps take place at particular times corresponding
to the moments when the respective guiding packet undergoes a splitting. For example, the
first jump of χ(t) in figure 7(c) corresponds to the splitting of the respective guiding packet
at t = 180 (figure 5(a)), while a second jump (at t = 750) corresponds to a new splitting of
the same packet that is not plotted in figure 5(a). This behavior of the Bohmian orbit, that
looks regular for a transient time interval and then becomes chaotic, is similar to the classical
phenomenon of stickiness. Classical sticky orbits look like regular orbits that remain close
to the borders of an island of stability for quite long times, being obstructed by cantori, i.e.,
invariant sets of phase space that constitute partial barriers to chaotic diffusion (see Meiss
(1992) and Contopoulos (2004) for reviews and Efthymiopoulos et al (1997)).

Stickiness in wave-packet dynamics, caused by classical cantori, has been observed by
Kollmann and Capel (1997). The stickiness time in this case, where the underlying classical
dynamics is nearly integrable, should be distinguished from the decoherence time in kicked
rotor models (e.g., Berman and Zaslavsky (1978)), where the underlying classical dynamics
is fully chaotic. The fact that Bohmian orbits are also subject to stickiness is crucial as
regards the application of the Bohm–Vigier theory, because stickiness implies that this theory
is applicable only after the stickiness time is over. In fact, before this time an orbit cannot
explore the whole available space, therefore it does not satisfy the necessary conditions of the
Bohm–Vigier theory. This point is demonstrated by specific numerical examples in section 4.

Now, as the effective perturbation, quantified by ρ, increases, the transient phenomena
disappear and the Bohmian orbits are chaotic from the start. Such is the case of the Bohmian
orbit of figure 8, guided by the wave packet of figure 5(c) that loses its coherence after a very
short time interval. In this case, the quantity χ(t) (figure 8(b)) also tends quickly to a final
positive value.

3.3. A modified two-slit experiment

A model for the guiding field ψ(x, z, t) in the usual quantum two-slit experiment is the solution
of the initial value problem for the two-dimensional time-dependent Schrödinger equation
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−1

2

(
∂2ψ

∂x2
+

∂2ψ

∂z2

)
= i

∂ψ

∂t
(25)

with initial condition

ψ(x, z, 0) = ψ1(x, z) + ψ2(x, z) (26)

where the functions ψi, i = 1, 2 are given by

ψi(x, z) = ψix(x)ψiz(z) = c exp(ikxx) exp

(−(z − zi)
2

2σ 2
0

)
(27)

with kx, c, ziσ0 being the real constants. The constants z1, z2 correspond to the positions
of the two slits, c is a normalization constant and kx is the wave number of the plane wave
ψix corresponding to a propagation velocity u = kx . The wavefunctions ψiz are Gaussian
functions with dispersion σ0. These admit the Fourier decomposition

ψiz(z) = 1

2π

∫ ∞

−∞
ck exp(ik(z − zi)) dk (28)

where

ck = 1

2π

∫ ∞

−∞
ψiz exp(−ik(z − zi)) dz. (29)

Equation (29), using equation (27), yields

ck ∝ exp
(− 1

2k2σ 2
0

)
. (30)

The solution of the time-dependent Schrödinger equation (equation (25)), for each of the
functions ψi, i = 1, 2, is given analytically in terms of the Fourier coefficients ck . One has

ψi(x, z, t) = ei(kxx−Ext)
1

2π

∫ ∞

−∞
ck exp(i(k(z − zi) − Ezt)) dk (31)

where Ex = k2
x

/
2, Ez = k2/2, yielding

ψi(x, z, t) ∝ ei(kxx−Ext)
1√

σ0 + it/σ0
exp

(
−(z − zi)

2

2
(
σ 2

0 + it
)

)
. (32)

Thus, the probability distribution |ψiz|2 is Gaussian at all times with dispersion

σ 2
P (t) = σ 4

0 + t2

2σ 2
0

, (33)

i.e., the dispersion increases as the time t increases.
If the distance between the two slits is large enough, |z1 − z2| = �z � σ0, the two

Gaussian distributions are initially well separated. However, as the time t increases, the
dispersion increases, the two wavefunctions start overlapping and the total wavefunction
shows interference. Philippidis et al (1979) found that the Bohmian orbits deviate from
straight rays so as to be guided to follow the interference pattern created by the ψ-field. This
is shown in figure 9. The parameter values are z1 = 20, z2 = −20, σ0 = 2 and kx = u = 1.
Interference becomes important when the two wavefunctions start overlapping, after a time
equal to about t = 25 (figure 9(a)).

As t increases, the two wavefunctions overlap in a wider interval �z. Thus, the consecutive
maxima and minima of the interference pattern become visible to a larger extent in the z-axis
(compare figures 9(a)–(d) for t = 25, t = 50, t = 75 and t = 100, respectively). This remark
is crucial as regards the characterization of orbits as regular, or chaotic, because it implies that
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(a) (b)

(c) (d )

Figure 9. Bohmian orbits in the two-slit experiment. 50 orbits in each slit, with initial
conditions uniformly distributed in the interval zi − σ0/2 � z � zi + σ0/2, i = 1, 2, with
z1 = 20, z2 = −20, σ0 = 2, and ψ-field given by the solution of equation (1) for initial condition
given by equation (26), with x = kx t, kx = 1. (a) t = 25, (b) t = 50, (c) t = 75 and (d) t = 100.

the phase space is not compact in either the x- or z-axis. In fact, the pilot-wave equations,
deduced from (2), are

dx

dt
= kx (34)

dz

dt
= −Im


 (z − z1) exp

(−(z−z1)
2

2(σ 2
0 +it)

)
+ (z − z2) exp

(−(z−z2)
2

2(σ 2
0 +it)

)
exp

(−(z−z1)2

2(σ 2
0 +it)

)
+ exp

(−(z−z2)2

2(σ 2
0 +it)

)

 . (35)

Thus, the two equations are uncoupled and they should be examined separately. equation (34)
has the trivial solution x = x0 + kxt . Thus, the only non-trivial equation is (35), which is
a time-dependent first-order nonlinear differential equation. This is equivalent to a system
of two autonomous nonlinear first-order differential equations, and, as already stressed, there
cannot be chaos in such a system.

But even if a coupling is introduced between equations equations (34) and (35), one can
still not speak of chaos, because of the non-compactness of phase space. To demonstrate this,
we consider a modified two-slit experiment, in which the initial wave fronts form an angle φ,
for slit 1, and −φ, for slit 2, respectively. That is, the initial wavefunction is

ψ(x, z, 0) = ψ1(r1, y1, 0) + ψ2(r2, y2, 0) (36)
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(a) (b)

Figure 10. (a) Bohmian orbits and the fronts defined by their endpoints in the modified
two-slit experiment with φ = −0.5 rad. The fronts are plotted in ten different snapshots
t = 20, 40, . . . , 200. (b) A magnification of the fronts for t = 180 (left curve) and t = 200
(right curve).

where ψ1 and ψ2 are of the form (27), and

r1 = x cos φ + (z − z1) sin φ, y1 = −x sin φ + (z − z1) cos φ

and similarly for (r2, y2), with φ replaced by −φ and z1 replaced by z2.
Now the two Bohmian equations of motion are coupled, and the coupled system is a

system of two non-autonomous, nonlinear first-order ODEs that may in principle exhibit
chaos. However, the fact that the phase space is non-compact means that the usual notion of
chaos does not apply to these orbits. In particular, as explained in section 2, the calculation
of a zero or positive Lyapunov characteristic number does not imply that an orbit is regular or
chaotic.

Even so, some mixing can in principle take place in configuration space, on a coarse
level, as a result of the quite intricate shape of the curves formed in configuration space
by the endpoints of many Bohmian trajectories starting along two initial straight lines
(figure 10). In the usual two-slit experiment, the angle φ in equation (37) is φ = 0, that
is the slits are on the same line x = 0. Furthermore, all the points move with constant velocity
kx in the x-axis. Therefore, the image of the initial line x = 0 under the Madelung flow, after
time t, is simply a new line x = kxt . This is clearly seen in figure 9, for kx = 1. Namely,
the endpoints of the orbits, at time t, are all on the straight line x = t . If however, φ �= 0,
the points of the first slit are initially on a straight line forming an angle φ with the z-axis,
while the points of the second slit are on a straight line forming the opposite angle −φ. In
fact, one may join these lines continuously by considering the level line of constant phase
S(x, z, 0) = Im(Log ψ(x, z, 0)) = const, that passes from the slit centres. If z2 − z1 � σ0,
the line of constant phase practically coincides, in the neighbourhood of the two slits, with
straight lines of inclination angles φ and −φ, respectively.

Figure 10(a) shows the evolution of the images of these straight segments, that we call
‘fronts’, in the case φ = −0.5 rad, for ten different time snapshots t = 20, 40, . . . , 200,
with initial conditions distributed with a Gaussian distribution along the segment centred at
the corresponding slit. A number of Bohmian orbits generating the fronts are overplotted.
Clearly, as t increases, the fronts are no longer straight lines, but they develop oscillations
around inclined straight segments. Such oscillations are shown in detail in figure 10(b), which
is a magnification of figure 10(a) for the fronts corresponding to the time snapshots t = 180
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and t = 200. Now, since the Bohmian orbits do not cross each other, there cannot be any
mixing of Bohmian orbits along the front curves. However, one still has to examine whether
the oscillations made by these lines can cause any mixing of the orbits on a coarse level. As
shown in the next section, this does not happen. Therefore, the Bohm–Vigier theory is not
applicable to the two-slit or modified two-slit experiment, because there is no chaotic mixing.

4. Numerical test of the Bohm–Vigier theory and quantum Nekhoroshev stability

As mentioned in the introduction, one main reason why the study of chaos is important in
Bohmian mechanics is the fact that chaos may explain the irregularity of the Madelung flow
in a quantum system (Bohm and Vigier 1954) without reference to any external mechanism
(Bohm 1953), such as collisions of the Bohmian particles or fluid elements with particles
or fields not belonging to the system. Furthermore, the irregularity of Madelung’s flow is a
necessary condition for the applicability of the Bohm–Vigier theory, that an arbitrary initial
particle distribution P tends asymptotically to the wavefunction distribution |ψ(x, t)|2. In the
present section, we numerically investigate the applicability of the Bohm–Vigier theory in
various quantum systems, as related to the regular or chaotic character of the corresponding
Bohmian orbits.

4.1. Bohm–Vigier theory in time-dependent wave packets

Our first example refers to time-dependent wave packets as in subsection 3.2. According
to Madelung (1926), if we consider an initial distribution of Bohmian particles of the form
P(x, y) = |ψ(x, y)|2 the distribution P(x, y, t) should coincide with |ψ(x, y, t)|2 at any later
time t. This property can be used as a test of the accuracy of the numerical integrations of
both Schrödinger’s equation for the wave packet and of the Bohmian orbits. Such a test is
shown in figure 11, in which the initial function ψ(x, y) is given by a Gaussian coherent state
(equation (24)). As the numerical calculation is very lengthy, a compromise has to be made as
to the number of Bohmian particles in a simulation. Thus, 900 Bohmian orbits are integrated in
each experiment. In order to derive a smooth surface density Ps(x, y, t) with only 900 points,
a Gaussian smoothing scheme is implemented. Namely, the density Ps is found by imposing
a Gaussian kernel to the particles’ positions:

Ps(x, y, t) =
900∑
i=1

A exp

(
− (x − xi(t))

2 + (y − yi(t))
2

2σ 2
s

)
(37)

where the coefficient A is computed so as to render the total probability equal to unity over
the grid domain where Schrödinger’s equation is solved. The particles are given random
initial positions from a Gaussian random generator with dispersion as in the wave packet
(24), with initial conditions corresponding to ρ = 2 in the Hénon–Heiles Hamiltonian (23).
Theoretically the two densities should be equal, Ps = |ψ |2, at any time t. However, due to the
numerical noise effects, Ps and |ψ |2 turn out to be only nearly equal. This is demonstrated
in figure 11, where the left panels in each column correspond to contour lines of Ps given by
equation (37) for the Bohmian particles, while the right panels correspond to contour lines of
|ψ |2 at the same time snapshots t = 30, 60, . . . , 300.

The resemblance of the two distributions is visually clear at all times, although the
particles’ distribution shows more graininess than the |ψ |2 distribution which is derived from
a smooth function. The closeness of the two distributions can be quantified in the following
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Figure 11. The panels numbered 1–10 show the comparison between the particle density Ps (left
column) versus |ψ |2 (right column) in ten time snapshots t = 30, 60, . . . , 300 respectively, for the
same experiment as in figure 5(b) (Hénon–Heiles Hamiltonian, ρ = 2). The density Ps is given
by equation (37) for 900 Bohmian orbits with initial conditions following a Gaussian distribution
|ψ(x, y, 0)|2 where ψ(x, y, 0) is the coherent state given by equation (24).

manner: we consider a density difference D(t) given by the sum of absolute differences of
the two probability densities over the N × N grid points (xk, yl)

D(t) =
N∑

k=1

N∑
l=1

|Ps(xk, yl, t) − P(xk, yl, t)|, (38)

where P = |ψ |2. The grid size is dx = (xmax − xmin)/N, dy = (ymax − ymin)/N , with
N = 128, xmin = ymin = −12.8 and xmax = ymax = 12.8. Figure 12(a) shows the time
evolution of the quantity D(t) in the experiment of figure 11. Initially, the function D(t) has
values in the level D(t) 	 3.5. However, as the system responds to the numerical integrator,
D(t) increases, reaching values at the level D(t) 	 10. At this level, D(t) stabilizes. The
statistical significance of this error can be deduced from a simple calculation. Down to the
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(a) (b)

Figure 12. (a) The density difference D(t) (equation (38)) for the experiment of figure 11. (b) The
density difference D(t) in the same experiment, but with 90 000 particles. The particle density Ps

is calculated without smoothing.

3-sigma level, the functions Ps and |ψ |2 cover about ∼1500 cells in the grid surface. The
mean value of P in these cells is P ∼ 0.06. On the other hand, the mean difference per cell
is about 10/1500 = 0.006. Thus, the mean fractional difference of the values of P and |ψ |2
is of order 10%. Now, this is much less than the expected Poisson noise without smoothing
of the density. In fact, without the smoothing kernel, the covering of an area of 1500 cells
by 900 particles would imply less than one particle per cell, which would make noise more
important than signal. To demonstrate the effectiveness of the smoothing process, figure 12(b)
shows the function D(t), without smoothing, in an experiment with the same initial conditions
as in figure 12(a) but with a much larger number of particles (90 000). The evolution of the
function D(t) is quite similar in both experiments, although the second experiment uses a much
larger number of particles. In fact, the Poisson noise in this latter experiment corresponds to
∼1/

√
ncell, where ncell = 90 000/1500 = 60 is the average number of particles per cell. Thus,

the noise is about 13%, that is quite similar to the 10% error found with only 900 particles and
a smoothed distribution.

We now check the Bohm–Vigier theory by changing the initial particle distribution Ps so
as to have a different distribution from |ψ |2. To this end, we consider an initially homogeneous
particle distribution in a square of size �x = �y = 0.2, centred at (x0, y0) given by the initial
conditions of the same wave packet as in figure 11. Figure 13 shows the evolution of the
densities Ps and |ψ |2 in this experiment. Clearly, as long as the wave packet remains coherent
to some extent, the distribution Ps also maintains its coherence and it is quite different from
|ψ |2. However, as |ψ |2 gradually loses its coherence, the particle distribution Ps changes
dramatically and gradually obtains the overall shape of |ψ |2. As a result, the two distributions
become very similar at t = 300.

The degree of similarity of the two distributions can be quantified by plotting the density
difference D(t) (figure 14). Initially, the difference D(t) fluctuates around a value D(t) = 35
that grows a little later to D(t) = 45. This is four times larger than the minimum error level
as calculated by the Gaussian distributions. The difference D(t) starts decreasing around
t = 100. The decrease is rather abrupt and leads to a low value of D(t) around the minimum
error level D(t) = 10. A further decrease of D(t) cannot be detected with the resolution of
the present experiment.

Now, the key point in the above experiment is the remark that the transition value
(t = 100), when D(t) starts decreasing, is equal to the value of t when the function χ(t)
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Figure 13. The panels numbered 1–10 show the comparison between the particle density Ps (left
column) versus |ψ |2 (right column) in ten time snapshots t = 30, 60, . . . , 300 respectively, for the
same experiment as in figure 5(b) (Hénon–Heiles Hamiltonian, ρ = 2). The density Ps is given
by equation (37) for 900 Bohmian orbits with initial conditions homogeneously distributed in a
0.2 × 0.2 square centred at (x0, y0) = ρ/2, ρ/2, with ρ = 2, as in figure 5(b).

for a Bohmian orbit starting at the centre of the wave packet (figure 14(b)) shows a first jump
to a significantly positive value. That is, the tendency of the two distributions to coincide is
related to the degree of chaos of the Bohmian orbits described by the particles forming the
distribution Ps .

In order to demonstrate that chaos is responsible for the convergence of Ps to |ψ |2,
figure 15 shows the evolution of D(t) in a simpler experiment, namely the two harmonic
oscillators Hamiltonian (15) without coupling. The distribution of particles is initially uniform
in a square �x = �y = 0.2, centred at initial conditions (x0, y0) as in the orbits of figures 2
(chaotic) and 3 (regular), respectively. In the case of chaotic orbits, the difference D(t) (curve
(a) in figure 15) decreases continuously, albeit rather slowly, from an initial value D(t) = 40.
On the other hand, in the case of regular orbits (curve (b)), the difference D(t) remains
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(a) (b)

Figure 14. (a) The density difference D(t) (equation (38)) for the experiment of figure 13.
(b) The time evolution of χ(t) for a Bohmian orbit as in figure 8(b), with initial conditions
(x0, y0) = ρ/2, ρ/2, with ρ = 2, guided in the ψ-field of figure 13.

(a)

(b)

Figure 15. The number density difference D(t) (equation (38)) for 900 Bohmian orbits with initial
conditions homogeneously distributed in a 0.2 × 0.2 square centred at (x0, y0), and in the same
ψ-field, as (a) figure 2(a) (chaotic orbit) and (b) figure 3(a) (regular orbit).

practically constant, up to some noise oscillation, except for a small decrease at the end of
the integration. We checked that the final decrease is linear in t, but with a very small slope
(8.2 × 10−5).

The decrease of D(t) in case (a), while faster than in case (b), is still relatively slow
compared to the decrease of D(t) in the case of figure 14(a). This should be expected, since
the ψ-field has a much simpler form in the present case than in the case of the ψ-field that
produces figure 14. This is shown in figure 16, where the particle distribution Ps is compared
with the distribution |ψ |2 for the experiment of figure 15(a). The distribution |ψ |2 shows a
well-defined nodal pattern which is the result of superposition of three stationary states. On
the other hand, the particle distribution Ps , which is initially homogeneous in a square around
x0 = y0 = 0.1, quickly splits in two parts (figure 16(a), t = 1). The left part splits into an
upper and a lower part, at t = 10 (figure 16(b)), while the right part splits a little later (not
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Figure 16. Contour plots of Ps versus |ψ(x, y, t)|2 as in figure 13, when the initial particle
distribution is homogeneous in a 0.2 × 0.2 square around (x0, y0) = (0.1, 0.1) and the ψ-field is
as in the experiment of figure 2(a). The four time snapshots are (a) t = 1, (b) t = 10, (c) t = 1000
and (d ) t = 4000.

shown in the figure). However, after these initial splittings, the evolution of Ps towards |ψ |2
slows down (figures 16(c) and (d), for t = 1000 and t = 4000, respectively).

Returning to the wave packets of the Hénon–Heiles Hamiltonian, figures 17 and 18 are
as figures 13 and 14(a), but for initial conditions (ρ = 1.3) corresponding to a smaller
effective perturbation from the two harmonic oscillators Hamiltonian. The time snapshots are
t = 100, 200, . . . , 1000. Clearly, the decoherence of the wave packet, as well as the approach
of Ps to |ψ |2, takes place at a much slower rate compared to the experiment of figures 13 and
14. The behaviour of the difference function D(t) is also similar in the two cases, but the time
when D(t) starts decreasing, as well as the time it takes for D(t) to reach the error level, is
considerably prolonged in the second experiment (compare figures 14(a) and 18).

4.2. A quantum analogue of Nekhoroshev’s theorem

By repeating the same experiment for a set of values of ρ, it is possible to obtain estimates
of a relation of the form T (ρ), where T is a measure of the timescale of convergence of the
distribution Ps to |ψ |2, related to the time of decoherence of the corresponding wave packet,
as a function of ρ.

To this end, we define three different measures of T, as demonstrated with the help of
figure 19. Figure 19(a) shows the time evolution of D(t) in two experiments (ρ = 0.5 and
ρ = 0.8), for an initial time interval t � 2000. In both cases, the respective functions undergo
a number of oscillations such that their values remain within a zone between a maximum and
a minimum D(t) for some time. Denoting the variation between maximum and minimum by
dP , it is observed that, in the case of the experiment with ρ = 0.8, the variations of D(t)

remain within a zone dP , with dP 	 4, for a time t � Tcross, where Tcross, the time of crossing
of the zone is Tcross 	 800. On the other hand, in the case of the experiment with smaller ρ

(ρ = 0.5), the width of the zone is smaller (dP 	 2.5), but the function D(t) does not cross
the respective zone up to t = 2000 (the crossing takes place around Tcross = 4400. The width
of the zone dP is an almost linear function of ρ. In fact, a power-law fit (figure 19(b)) yields
the exponent 1.15, that is, very close to unity.
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Figure 17. As in figure 13, for a wave packet as in the experiment of figure 5(a) (Hénon–Heiles
Hamiltonian, ρ = 1.3). The ten time snapshots are t = 100, 200, . . . , 1000.

Besides Tcross, an independent measure of the time T is provided by the time when D(t)

crosses a particular threshold value. Here, we consider the times T20 and T15 that correspond
to the moments when D(t) crosses the values D(t) = 20 and D(t) = 15, respectively. Both
times are much longer than Tcross, therefore they both represent the scaling of T with respect
to ρ in the long-term dynamics. Furthermore, in order to smooth out short-time variations
of D(t), we consider smoothed curves D(t) obtained from the non-smoothed curves by a
smoothing average method with time window �t = 7.5. Figures 19(c) and (d) show the
non-smoothed and the smoothed curves of the experiments with ρ = 1.3 and ρ = 2. The
time axis is plotted on a logarithmic scale. Then, the times T20 and T15 are obtained as the last
times when the smoothed curves cross the values D(t) = 20 and D(t) = 15, respectively.

Figure 20(a) shows the final result. For a series of experiments in the range of values
0.5 � ρ � 2, the time T, as represented by Tcross, or T20 and T15, is well fitted by an
exponential law in the inverse of ρ. Namely, the three curves ln Tcross, ln T20, ln T15 versus 1/ρ
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Figure 18. The time evolution of the density difference D(t) (equation (38)) for the experiment
of figure 17.

(a) (b)

(c) (d )

Figure 19. (a) The functions D(t) for two experiments corresponding to the values ρ = 0.5 and
ρ = 0.8, for an initial time interval t � 2000. (b) The maximum variation dP of D(t) in an initial
time interval (t � 300) as a function of ρ and a power-law fit of this function. (c) Non-smoothed
functions D(t) as in the previous experiments and (d) smoothed functions with a moving window
of width equal to �t = 7.5.
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(a)

(b) (c)

Figure 20. (a) The time of wave-packet stability as a function of the effective perturbation ρ.
Lower curve: log Tcross versus ρ. Middle curve: log T20 versus ρ. Upper curve: log T15 versus ρ.
(b) The curve log Tmax versus ρ in linear scale. The dashed curve is a power-law best fitting curve
that corresponds to an exponential scaling of T over ρ. (c) Same as (b), with a logarithmic best
fitting that corresponds to a power-law scaling of T with ρ.

are well fitted by ln T ∝ (1/ρ)a , with similar exponents, a = 0.659 for Tmax, a = 0.583 for
T20, a = 0.631 for T15. Let us note that the time Tcross was calculated for all the experiments in
the range 0.5 � ρ � 2, while the times T20 and T15 were not calculated for very small values
of ρ, because the function D(t) did not cross the respective thresholds up to the last time of
numerical integration. Thus, the curve Tcross versus ρ provides the most reliable information.
In fact, given the limited range of values of ρ, one may also try other fitting laws. For example,
figure 20(c) shows a power-law fitting for the same data (log T is plotted on a linear scale),
which is compared to the exponential fitting (figure 20(b)) plotted in the same scale. Although
the exponential fitting (figure 20(b)) is clearly better than the power-law fitting (figure 20(c))
for these data, the power law also yields a reasonable fit. We conclude that, quite likely, the
time T scales exponentially with 1/ρ, but experiments for a much longer integration time are
required in order to exclude the possibility of a power law.

Exponential stability is a very well-known property of the orbits in classically nearly
integrable Hamiltonians, that is the content of the theorem of Nekhoroshev (1977). The result
of figure 20 indicates that a quantum version of Nekhoroshev theorem may be applicable to
the decoherence times of wave packets in quantum Hamiltonians corresponding to perturbed
harmonic oscillators. This time can become very long provided that ρ is small. For example,
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Figure 21. The time of wave-packet stability as a function of the effective perturbation ρ for the
Hamiltonian (39). Lower curve: log Tcross versus ρ. Middle curve: log T20 versus ρ. Upper curve:
log T15 versus ρ.

if the curves of figure 20 are extrapolated to a distance ten times smaller than the outermost
left point, the time of exponential stability becomes exp(100.6) = 53 times larger. For ρ

smaller by a further factor 10, this time is exp(1000.6) = 7.6 × 106 times larger. Thus, for
ρ sufficiently small, the Nekhoroshev time exceeds any dynamical timescale relevant to the
quantum system under study. It follows that the convergence of the P and |ψ |2 distributions
may require a time that exceeds any timescale of physical interest.

Finally, figure 21 shows the result of a similar calculation in the Hamiltonian

H = 1
2

(
p2

x + p2
y

)
+ 1

2 (x2 + y2) − 0.024 8452y(x2 + 2y2). (39)

This Hamiltonian is known to be classically integrable (Bountis et al 1982) as well as quantum
integrable in the sense of commuting Moyal brackets (Hietarinta 1983). However, the Bohmian
orbits in this Hamiltonian exhibit chaos. We have repeated the calculation of LCNs for
many orbits guided by a wave packet in this Hamiltonian and found that they are typically
positive. Furthermore, as shown in figure 21, the times Tcross, T20 and T15 also appear to scale
exponentially with the inverse of the effective perturbation 1/ρ, with a noticeable difference
in the exponent a for the curve Tcross versus ρ. In conclusion, it appears that the phenomenon
of exponential stability of wave packets is generic in quantum systems that are perturbations
of harmonic oscillator systems.

4.3. Testing the Bohm–Vigier theory in a modified two-slit experiment

In the usual two-slit experiment, Bohmian orbits are started at the slit positions, that is with
initial conditions x0 = 0 and z0 in an interval around each slit’s centre. On the other hand, a
detector is placed in some plane x = const that counts the arrival of particles to this plane.
In order to test the Bohm–Vigier theory, one then has to calculate the linear density along the
plane at the time t when particles are incident to it. Numerically, the linear density Ps(z) is
calculated as Ps(z) = �N(z)/�z, where �N(z)/�z is the number of particles arriving in a
small bin of width �z centred at z.

Figure 22(a) shows the comparison of the numerical density Ps(z), for a realization
of an initially Gaussian distribution (|ψ(x, z, 0)|2 with ψ given by equation (26) and 500
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(a) (b)

(c)

Figure 22. (a) Comparison of the numerical density Ps(z) with |ψ |2 in the two-slit experiment.
The particles are given initial conditions with two Gaussian distributions (=|ψ(x, z, 0)|2) with
ψ given by equation (26) and 500 particles in each slit. The function Ps(z) (dashed curve)
is compared with the density |ψ(x, z, t)|2 (solid curve) when x = kx t and kx = 1, t = 100.
(b) Same as (a) for an initially homogeneous distribution of particles Ps(0), while ψ is again given
by (26). (c) The number density difference as a function of time in the case of experiment (b).

particles in each slit, with the density |ψ(x, z, t)|2, as a function of z, on the incidence plane
x = kxt , for t = 100. As predicted for a Madelung flow, these distributions almost coincide
(a small difference in the central peaks is due to the poor sampling of the initial Gaussian
particle distribution at its tails). On the other hand, figure 22(b) shows the comparison of Ps

and |ψ |2 when the initial particle distribution is homogeneous instead of Gaussian. Clearly,
the two densities are now different, although the positions of the minima and maxima of
both densities coincide. This means that while the orbits guided by the ψ-field produce
the correct interference pattern, the resulting intensities on the incidence plane are not
the same. In fact, a calculation of the density difference D(t) (figure 22(c)) shows that
this difference remains constant in time. Here, the function D(t) is calculated simply as
D(t) = ∑M

j=1 |�N(j)/N − |ψj |2|, where j = 1, . . . ,M refers to the j th bin and ψj is the
value of the ψ-field at the centre of the bin. The constancy of D(t) follows trivially from the
fact that the Bohmian orbits do not cross (subsection 3.3), therefore any initial difference of
the number of particles �N(zj ) in a particular bin �zj , at t = 0, is preserved in the image of
this bin at any later time t.
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(a) (b)

Figure 23. (a) Comparison of the particle density P(s) (dashed curve) versus |ψ |2 (solid curve),
at time t = 200, for an initially Gaussian particle distribution at each slit, in the modified two-slit
experiment with z1 = 20, z2 = −20, σ = 2 and φ = −0.5 rad. The variable s is the length
parameter along the fronts of figure 10(a). The number of particles is 578 at each slit. (b) Same
as (a), when the initial particle distribution is homogeneous in an interval of width 4σ centred at
each slit.

Now, as shown in subsection 3.3, the same property, of non-crossing of the orbits, also
holds in the modified two-slit experiment, with φ = −0.5. Therefore, the density difference
is expected to remain constant. Numerically, in order to define a linear density in the fronts of
figure 10, we approximate these fronts as polygonal lines joining the endpoints of a number of
Bohmian orbits (500 in each split) that trace the evolution of the front. Then, the cumulative
density C(s), for an initially Gaussian or uniform distribution, is calculated as a function of the
length parameter s along a polygonal line. Numerical differentiation of C(s) yields the linear
density P(s) as a function of the length parameter s along the front. As shown in figure 23, the
same phenomenon takes place as in figures 22(a) and (b). Namely, when the initial particle
distribution is homogeneous, the peaks of P(s) are at the correct place on the incidence front,
but they have quite different values than those of |ψ |2. On the other hand, when the initial
distribution is Gaussian, the peaks of P(s) are at the correct place and have similar values as
the peaks |ψ |2. In fact, a small difference between these values observed for the central peaks
is caused by the poor sampling of the initial Gaussian particle distribution near the line z = 0
where the fronts coming from the two slits are joined. Similarly, a difference in the high tail of
the two distributions is caused by a truncation of the particle distribution that we numerically
impose at the 4-sigma level.

The question now arises whether the foldings that are progressively developed on the
fronts (figure 10) may cause an equalization of the densities in a coarse level, that is in a zone
that determines an area around each front. In order to check this, we considered particles
starting in the neighbourhood of each slit, with initial conditions as in figure 10, but r0 with a
uniform distribution in an interval 0 � r � �r = σ0. An area density Ps , instead of linear
density, is then calculated by the Gaussian smoothing algorithm of equation (37). Figure 24
shows the result of the density difference D(t) when the initial density is (a) uniform or (b)
Gaussian, in the y variable. Clearly, in case (a) the difference D(t) stabilizes to a value well
above the error level, given by the curve (b). That is, the densities Ps and |ψ |2 do not tend to
coincide even in a coarse level. This means that the Bohm–Vigier theory is not applicable in
the case of the modified two-slit experiment, not even in a coarse grained way, because there
is no chaotic mixing.
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(a)

(b)

Figure 24. Time evolution of the area density differences D(t) in the modified two-slit experiment
with z1 = 20, z2 = −20, σ = 2φ = −0.5 rad. The particles (900 at each slit) are given initial
conditions with (a) uniform and (b) Gaussian distributions in y centred at the two slits, while they
are uniformly distributed in the variable r within the interval 0 � r � σ0.

5. Conclusions

In the present paper, we study chaos in a number of characteristic examples of quantum
systems by means of the orbits of the corresponding Bohmian mechanics. We numerically
also check the extent of applicability of the Bohm–Vigier theory, concerning the equalization
of the particle’s P and |ψ |2 distributions, when the irregularity of Madelung’s flow is caused
by the chaotic character of the associated Bohmian orbits. Our main conclusions are

(1) We discuss necessary conditions that should apply in order to define chaos in time-
dependent potentials such as the Bohmian quantum potential. We also describe a method
to precisely calculate the Lyapunov characteristic number and point out examples in the
literature where this calculation is done by imprecise methods leading to the erroneous
characterization of regular orbits as chaotic.

(2) In one-dimensional systems, the Bohmian orbits are always regular, while the classical
orbits can be chaotic if the classical potential is time dependent. Bohmian chaotic orbits
exist in systems of more than one dimension. This remark explains the difference between
the Bohmian orbits in the quantum standard map (regular) and in the quantum Arnold cat
map (chaotic).

(3) In simple quantum systems (superposition of three stationary states in two uncoupled
harmonic oscillators) with an aperiodic quantum potential, there are both regular and
chaotic orbits.

(4) We study the Bohmian orbits in the ψ-field generated by an initially coherent Gaussian
wave packet in the Hénon–Heiles Hamiltonian. When the coupling perturbation is
nonzero, we always find chaotic orbits. However, the evolution of the function χ(t)

(equation (10)) towards a positive limit (the LCN) is through abrupt jumps. Each jump
is linked to a splitting of the corresponding wave packet, which gradually leads to lose
its coherence by a number of consecutive splittings. Before the first splitting, the values
of χ(t) are very close to zero, meaning that the orbit effectively behaves as regular. This
behaviour is similar to the classical phenomenon of ‘stickiness’.
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(5) When the Bohmian orbits are chaotic, the distributions P and |ψ |2 tend to coincide
asymptotically in time, while, if the orbits are regular, the distributions P and |ψ |2 retain
a difference almost constant in time.

(6) The time of decoherence of a wave packet is of the same order as the time of equalization
of P and |ψ |2. In the Hénon–Heiles Hamiltonian, this time is well fitted by a fitting
law which is exponentially long in the inverse of the effective perturbation (measured
by the radius ρ or the associated energy value found from (23), see subsection 3.2). A
similar result is found in the case of an integrable Hénon–Heiles Hamiltonian. This
result is a quantum analogue of Nekhoroshev theorem of exponential stability in classical
Hamiltonian dynamics.

(7) In two-slit or modified two-slit experiments, the phase space is not compact, therefore the
usual notion of chaos is not applicable. But the most important thing is that the Bohmian
orbits do not cross. As a result, we find no equalization of P and |ψ |2, when viewed either
as linear densities on a plane of incidence or surface densities in configuration space. In
conclusion, the Bohm–Vigier theory is not applicable in the case of two-slit experiments.
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Oriols X, Martin F and Suné J 1996 Phys. Rev. A 54 2594
Parmenter R H and Valentine R W 1995 Phys. Lett. A 201 1
Parmenter R H and Valentine R W 1997 Phys. Lett. A 227 5
Passon O 2005 Preprint quant-ph/0412119v2
Pauli W 1928 Proc. Solvay Congress (Paris: Gauthier-Villars)
Pauli W 1953 Louis de Broglie. Physicien et Penseur ed G André (Paris: Editions Albin Michel)
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